Inhibition of p21 Activated Kinase (PAK) Reduces Airway Responsiveness In Vivo and In Vitro in Murine and Human Airways

نویسندگان

  • Wyn C. Hoover
  • Wenwu Zhang
  • Zhidong Xue
  • Huanling Gao
  • Jonathan Chernoff
  • D. Wade Clapp
  • Susan J. Gunst
  • Robert S. Tepper
چکیده

The p21-activated protein kinases (Paks) have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/-)) was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh). Pulmonary resistance was measured in anesthetized mechanically ventilated Pak1(-/-) and wild type mice. Pak1(-/-) mice exhibited lower airway reactivity to ACh compared with wild type mice. Tracheal segments dissected from Pak1(-/-) mice and studied in vitro also exhibited reduced responsiveness to ACh compared with tracheas from wild type mice. Morphometric assessment and pulmonary function analysis revealed no differences in the structure of the airways or lung parenchyma, suggesting that that the reduced airway responsiveness did not result from structural abnormalities in the lungs or airways due to Pak1 deletion. Inhalation of the small molecule synthetic Pak1 inhibitor, IPA3, also significantly reduced in vivo airway responsiveness to ACh and 5-hydroxytryptamine (5-Ht) in wild type mice. IPA3 inhibited the contractility of isolated human bronchial tissues to ACh, confirming that this inhibitor is also effective in human airway smooth muscle tissue. The results demonstrate that Pak is a critical component of the contractile activation process in airway smooth muscle, and suggest that Pak inhibition could provide a novel strategy for reducing airway hyperresponsiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Regulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage

Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...

متن کامل

In vitro Effect of Lead, Silver, Tin, Mercury, Indium and Bismuth on Human Sperm Creatine Kinase Activity: a Presumable Mechanism for Men Infertility

Background: The aim of the present study was to investigate the in vitro effects of mercury (Hg+2), lead (Pb+2), silver (Ag+2), tin (Sn+2), bismuth (Bi+3) and indium (In+3) ions on sperm creatine kinase. Methods: creatine kinase was isolated from human sperm homogenates after chromatography on a DEAE cellulose column. Results: At 60 µg ml-1 metal concentration, 70% of the creatine kinase activi...

متن کامل

In Vitro Inhibition of Human Sperm Creatine Kinase by Nicotine, Cotinine and Cadmium, as a Mechanism in Smoker Men Infertility

Background Nicotine, cotinine and cadmium are harmful components of cigarettes that have an effect on human reproductive function. Although the effects of cigarette smoke on male reproductive function is characterized in several articles its mechanism of action is still unknown. In the present study, we investigate the effect of nicotine, cotinine and cadmium on human sperm creatine kinase acti...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012